Structure Theorems in Tame Expansions of O-minimal Structures by a Dense Set
نویسندگان
چکیده
We study sets and groups definable in tame expansions of ominimal structures. Let M̃ = ⟨M, P ⟩ be an expansion of an o-minimal Lstructure M by a dense set P . We impose three tameness conditions on M̃ and prove a cone decomposition theorem for definable sets and functions in the realm of the o-minimal semi-bounded structures. The proof involves induction on the notion of ‘large dimension’ for definable sets, an invariant which we herewith introduce and analyze. As a corollary, we obtain that (i) the large dimension of a definable set coincides with the combinatorial scl-dimension coming from a pregeometry given in Berenstein-Ealy-Günaydin [3], and (ii) the large dimension is invariant under definable bijections. We then illustrate how our results open the way to the study of groups definable in M̃, by proving that around scl-generic elements of a definable group, the group operation is given by an L-definable map.
منابع مشابه
Tame structures
We study various notions of “tameness” for definably complete expansions of ordered fields. We mainly study structures with locally o-minimal open core, d-minimal structures, and dense pairs of d-minimal structures.
متن کاملDistal and non-distal Pairs
The aim of this note is to determine whether certain non-o-minimal expansions of o-minimal theories which are known to be NIP, are also distal. We observe that while tame pairs of o-minimal structures and the real field with a discrete multiplicative subgroup have distal theories, dense pairs of o-minimal structures and related examples do not.
متن کاملTame topology over dp-minimal structures
In this paper we develop tame topology over dp-minimal structures equipped with definable uniformities satisfying certain assumptions. Our assumptions are enough to ensure that definable sets are tame: there is a good notion of dimension on definable sets, definable functions are almost everywhere continuous, and definable sets are finite unions of graphs of definable continuous “multi-valued f...
متن کاملStructures Having O-minimal Open Core*
The open core of an expansion of a dense linear order is its reduct, in the sense of definability, generated by the collection of all of its open definable sets. In this paper, expansions of dense linear orders that have o-minimal open core are investigated, with emphasis on expansions of densely ordered groups. The first main result establishes conditions under which an expansion of a densely ...
متن کاملConcerning the frame of minimal prime ideals of pointfree function rings
Let $L$ be a completely regular frame and $mathcal{R}L$ be the ring of continuous real-valued functions on $L$. We study the frame $mathfrak{O}(Min(mathcal{R}L))$ of minimal prime ideals of $mathcal{R}L$ in relation to $beta L$. For $Iinbeta L$, denote by $textit{textbf{O}}^I$ the ideal ${alphainmathcal{R}Lmidcozalphain I}$ of $mathcal{R}L$. We show that sending $I$ to the set of minimal prime ...
متن کامل